

Growth through innovation

SOLWARIS Project and CSP/PV hybrid concept plant

IN-POWER Online Workshop 27 October 2020

SOLWARIS project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n°792103

Table of contents

2

1

Company Introduction

SOLWARIS Project

3

Integrated CSP-PV hybrid plant

The Company

At **TSK**, we have pursued a clear objective since our foundation: to build **a leading business group in engineering development and the supply of facilities of the highest quality**.

Our priority is to meet the needs of our customer, offering them all the technical and human resources necessary every step of the way.

Our achievements and the professional drive of our entire human team are the highest guarantee for continuing to fulfil our commitment:

Service excellence.

Today, our Company has a turnover of more than **USD 1000 million,** which helps reinforce our position as a leading Technology Company with a strong international presence in Engineering and Industrial Construction.

Diversification

Renewable & Conventional Power

In recent years, TSK has positioned itself as one of the main EPC contractors in the **Conventional** as well as **Renewable Energy Sectors**.

TSK can call upon its extensive experience in the Engineering, Construction and Commissioning of Electricity Generating Power Plants with Open Cycle and Combined Cycle, Cogeneration Technology, Wind Farms, Solar Thermal and Photovoltaic Plants, Geothermal Plants, Hydro Power Plants and Coal/Biomass Plants, with involvement in projects of different types which in total surpass 15.000 MW.

	Project:	NOOR Midelt
and the second second	···· , ····	800 MW Hybrid Solar Power Plant
Budden and and	Description:	Technology: Hybrid CSP+ PV+ TES+ BESS
and the second second		200 MW CSP (1XSIEMENS SST 700/900)
		600 MW PV polycrystalline
		Thermal Energy Storage & Battery Energy Storage System
	Location:	Midelt (Morocco)
I share the set of the set	Client:	EDF - Masdar
	Ending date:	2023
	Ending date:	

 	and the second s		
	And a state of the	P.	1/-
		_ //	H
		//	

Project:	Shagaya Renewable Energy Park 50 MW CSP Plant with TES	
Description:	Technology: 1xSIEMENS SST800	
	Scope of Work: EPC + O&M (6 years)	
Location:	Kuwait	
Client:	Kuwait Institute for Scientific Research (KISR)	
Ending date:	2018	

Project:	NOOR I	
	160 MW CSP Plant with TES	
Description:	Technology: 1xSIEMENS SST 700	
3	Scope of Work: EPC	
Location:	Ouarzazate (Morocco)	
Client:	ACWA POWER	
Ending date:	2016	
An an a terraria and		

Project:	BOKPOORT 50 MW CSP Plant with TES	
Description:	Technology: 1xSIEMENS SST 800 Scope of Work: EPC	
Location:	Northern Cape (South Africa)	
Client: Ending date:	ACWA POWER 2016	

· ····	And the second second	1	

Project:	LA AFRICANA	
	50 MW CSP with TES	
Description:	Technology: 1xSIEMENS SST 800	
	Scope of Work: EPC + O&M	
Location:	Córdoba (Spain)	
Client:	La Africana Energía, S.L	
Ending date:	2012	

ANDASOL III
50 MW CSP with TES
Technology: MAN DIESEL & TURBO dual casing reheat
Scope of Work: EPC Solar field and HTF System + O&M
Granada (Spain)
Marguesado Solar
2011

CSP plants need water

Future CSP plants will be constructed in desertic areas

Signater Isues for CSP Plants

The overall purpose of the **SOLWARIS** project is to upscale, implement and demonstrate cost-effective technologies and strategies that bring about a significant reduction of water of CSP plants while ensuring excellent performance of electrical power production.

1

SOLWARIS

Study of the social, economic and environmental impacts of CSP plants on local communities

2

SOLWARIS

O&M Optimizer

4

Ultrasonic Cleaning Device

Integration of an ultrasonic cleaning device on a robotic arm of a cleaning truck

5 Heliostat Cleaning Device

Device installed in each heliostat

Waterless cleaning

Powered by PV panels in the heliostat

Accelerated aging tests

6 Antisoiling coating for mirrors

Optimization of the application method

Accelerated aging tests

Improve the efficiency and durability of the coatings

Comparision between coated and uncoated mirrors

7 Antisoiling coating for receivers

Up-scale of deposition process to long glass tubes

Accelerated aging tests

Improve the efficiency and durability of the coatings

Comparision between coated and uncoated tubes

8 Dust barriers

CFD Analysis

Wind tunnel tests

9 Smart Mirrors

Integrated soiling sensor on mirrors

On-line measurements

10 **cTES**: cold Thermal Energy Storage

CHARGE mode

Partial storage of condenser heat in cTES

DISCHARGE mode

Release of the heat stored in the cooling tower

11 WRS: Water Recovery System

CSP Low complexity Dispatchable Low Price Large storage capacities Easily scalable High complexity Storage not Dependent on competitive Volatile generation economies of scale

Base Load

Time of the day

Benefits

Lower electricity price

Higher storage capacity

Higher dispatchability

Improvement of cycle efficiency

Thanks for your attention

Luis.millan@grupotsk.com

SOLWARIS project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n°792103

